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Summary: MRCPA (multireference coupled pair approximation) is formulated 
by the use of the wave operator formalism and Rayleigh-Schr6diner perturba- 
tion theory with special selection of the unperturbed part of the electronic 
Hamiltonian. By considering super molecule, it is shown that the theory is size 
consistent with the help of the new formalism. The method has been tested for 
three simple systems, H20, FH, and 02. 
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1. Introduction 

Recent developments in computational quantum chemistry have increasingly 
shown the essential importance of adequate treatment of electron correlation in 
theory of the electronic structure of atoms and molecules [1, 2]. As a standard 
computation procedure for post Hartree-Fock calculations, the configuration 
interaction (CI) method has been well established in the field [3]. Its inherent 
simplicity and flexibility have led to various innovations of algorithm, such as 
direct CI [4], unitary group approach (UGA) [5], and so on. With remarkable 
development of computing facilities, such innovations now enable one to per- 
form CI calculations including the order of 10 6 configurations routinely. Highly 
sophisticated CI program systems are now popularly used in the world [6]. In 
particular, multireference single and double excitation CI (MRSDCI) is one of 
the most versitile theoretical schemes, and has undoubtedly expanded the bounds 
of theoretical themistry in various aspects. 

It is, however, well known that any truncated CI, including MRSDCI, suffers 
from severe principle difficulty, i.e., size inconsistency [7, 8]. Size inconsistency of 
truncated CI is caused by lack of configurations of the higher excitations 
responsible for canceling unlinked terms whose particle number dependence is 
incorrect. As a result, quality of truncated CI calculations is decreased as the 
number of correlating electrons increases. The inconsistency may lead to, for 
example, inappropriate or inaccurate potential energy surfaces. Size consistency 
in a correlated many-electron wavefunction is achieved by the full CI with a 
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given basis, but this type of calculation is impractical for most systems of 
chemical interest even with a small basis set. In order to relax this difficulty 
without extra cost, several schemes have been proposed [9] for correcting and/or 
extrapolating a truncated CI energy. 

The many-body perturbation theory (MBPT) and closely related coupled 
cluster method (CCM) constitute another predominant class of correlation 
methods [7, 8]. Unlike truncated CI, both methods have the advantage of size 
consistency at each level of approximation. The CCM presents a very efficient 
algorithm to account important parts of higher excitation effects, at the expense 
of rather complicated nonlinear structure of the resulting equations. Since the 
coupled pair many electron theory (CPMET) [10] and the coupled electron pair 
approximation (CEPA) [11], various coupled cluster approximations (CCA) [12] 
have been proposed. Applicability of these methods to real systems, however, has 
been relatively limited. The reason is that they are almost unexceptionally 
applicable to cases where the electronic state is lead by a configuration state 
function (CSF), i.e., the case of a single reference function. There are a lot of 
cases where usage of multireference functions is required: for example, proper 
description of potential surfaces both in the ground state and excited states. It is 
noted that some developments to incorporate multireference functions in MBPT/ 
CCM have been made in the last decade [13, 14]. The formal structure of the 
theories are quite complicated and some simplified schemes have been proposed 
and examined [ 15]. 

Other than these efforts, some trials to develop approximate size consistent 
theories where one can take advantage of simple computational procedure of 
MRSDCI; ACPF (averaged coupled pair functional) [16a], QDVPT (quasi 
degenerate variation perturbation theory) [16b], and MRCPA (multireference 
coupled pair approximation) [16c]. Hereafter we designate our previous paper 
[16c] as I. In that paper, we proposed a nonlinear expression of a total wave 
function, 7~,, 

where ~bb and Oi represent a reference function and an excited function orthogo- 
nal to the reference functions, respectively. In obtaining a solution, we developed 
a Rayleigh-Schr6dinger perturbation expansion with the special selection of the 
unperturbed part of the Hamiltonian. In this paper, we show that the MRCPA 
theory can be expressed more straightforwardly by the use of a perturbation 
theory within a wave operator formalism and consider the size consistency of this 
formalism. Further computational results on H20, FH, and O a are represented. 

2. Method 

2.1. Formal theory 

Since quasi-degenerate perturbation theory (QDPT) based on the generalized 
Bloch equations [13b] is utilized to reformulate the MRCPA, we give a brief 
description of the formalism pertinent to the present method. First, we define an 
operator I projecting whole space spanned by a complete orthonormal N 
electron basis, {~1}: 

I = ~ I~bk)(q~ k I" (2) 
k 
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As was done in I, the operator I is partitioned into three parts [17]: 

I = P + Q + R ,  (3) 

where P projects a subspace spanned by preselected reference functions: 
d d 

P = Z [q~.)(~.l  = Z P~, (4) 
# = 1  /~=1 

and is assumed to diagonalize the total electronic Hamiltonian H within the 
subspace: 

( P H P )  P~ (0) = E ~  P. ,  # = 1 , 2  . . . . .  d (5) 

where d represents the number of reference functions. The operator Q projects a 
subspace spanned by single and double excitation functions from the reference 
space, and R projects the rest space spanned by many-electron excitations: 

P H R  = R H P  =0.  (6) 

We use symbols P, Q, and R as operators and as the corresponding subspaces, 
interchangeably. 

In the next step, we define a wave operator W as follows: 

W = W P ,  P W  = P,  (7) 

W P  T~ = TJ~ , p = l , 2, . . . , d (8) 

where ~g~ represents an exact eigenfunction of the electronic Hamiltonian. It is 
noted that W is intermediately normalized. Once W is determined, exact energies 
associated with { 7', } # = l, 2 . . . .  d, are obtained by diagonalizing the effective 
Hamiltonian: 

Herr = P H W ,  (9) 

which acts only on a reference space. It is noted that the present effective 
Hamiltonian is generally non-Hermitian. 

In determining W, we utilize the perturbation theory of Lindgren [13b] with 
a specific choice of a perturbing term. According to the partitioning of the whole 
space as Eq. (3), the total Hamiltonian H is now partitioned into block-diagonal 
and off-block-diagonal parts, where the block-diagonal part is unperturbed 
part of  the Hamiltonian (H0) and the off-block-diagonal part is perturbing term 
(V). 

where 

H = H 0 +  V, (10) 

11o = P H P  + Q H Q  + R H R ,  

V = P H Q  + Q H P  + Q H R  + R H Q .  

The wave operator W obeys the generalized Bloch equation: 

[W,/401 = V W -  W V W ,  

= v w -  WT,  

where T = V W .  Let us expand W in order of the perturbation: 

(11) 

(12) 

(13) 

w =  Z w('). (14) 
/ 7=0  
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Substituting it into Eq. (13) and rearranging the terms in order of the perturba- 
tion, one obtains the order-dependent Bloch equations starting from W (°) = P: 

n - - 1  

[ W(n), Ho] = v w ( n - 1 ) -  E w(n-k)VW(k-1)" /'/>~ 1 (15) 
k=l 

In the following, we show equations up to the 4th order using Eq. (12): 

[W °), H0] = QHP, (16) 

[W (2),/40] = RHQ W (1), (17) 

[ W (3), Ho] = QHR W (2) - W(1)pHQ W (0, ~, (18) 

[W (4), Ho] = R H Q W  °) - W(2)pHQW (1). (19) 

As is seen in the above lower-order equations, one finds the present choice of the 
perturbing term in Eq. (12) leads to the following equation: 

W = W (°) -]- E [Q w(2k- 1)p + RW(Zk)p], (20) 
k=l 

i.e. W has R -  P components exclusively in even orders, and odd-order terms 
have Q -  P components. So the effective Hamiltonian given in Eq. (9) is 
expanded by: 

H e f  t ---= PHP + ~. Jta/4(2k)eff , (21) 
k = l  

where H ~  ) is defined as follows: 

H(2xk) = PHW(2k 1). (22) 

In the next subsection, we will show that the MRCPA given in I is rewritten 
by the present perturbation theory. 

2.2 M R C P A  

The simplest approximation which we call MRCPA(0) is the second-order 
perturbation theory: 

n ( e  MRCPA(0)) = PHP + H(~2~, (23) 

which is obtained by solving Eq. (16). More concrete form of the equation is 
given by: 

S D  

E {E(~ °) 6u - H~ } W j(.~) = H/v , (24) 
J 

and this is equivalent to Eq. (18) of I. QDVPT of Cave and Davidson [16b] is 
obtained by setting PHP of Eq. (16) as: 

PHP ~- E(~°) P, (25) 

where E~ °) is the zeroth-order energy of the target state #. It is also noted that 
the MRCPA(0) reduces to MRLCCM of Laidig and Bartlett [15b] if we 
calculate an energy without diagonalizing Eq. (23): 

EMRLCCM = ( ~  ]nl~" ) + ( ~  i n(e l (26) # 
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Hoffmann and Simons [15e] solve an equation essentially similar as Eq. (24) 
where they take a single function expanded by multireference functions in P. It's 
orthogonal complements and SD space are included in the space Q. The method 
is similar to VPT (variation perturvation theory) of Cave and Davidson [15b]. 

As was shown in I, MRCPA(0) may overshoot the correlation energy in 
some cases and inclusion of the higher-order correction is desirable. In order to 
take the fourth-order correction into account in the effective Hamiltonian, we 
need to solve Eqs. (17) and (18) successively. It is, however, impossible to solve 
Eq. (17). By similar consideration given in the CEPA theory, as was discussed in 
l, we approximate the right-hand side of Eq. (18) as follows: 

d 

[W (3), H0] = - ~  ~ Qi W(1)p~HQi W(I)P~, (27) 
i # = 1  

where W (3) means an approximation to W °). This approximation corresponds to 
neglecting the "connected" contribution of the higher excitation in the first term 
of the right-hand side of Eq. (18) and keeping the "exclusion principle violating 
(EPV)" type contribution in the right-hand side of Eq. (18). Then we obtain: 

d 

[W (1) + W (3), Ho] = QHP - ~  ~, QiW(I)puHQ~ W(I)P~,. (28) 
i # = 1  

Equation (28) is rewritten as: 
d 

[W (1) -[- W (3), H o + A] = QHP - ~ Z Q~ W(3)p, HQg W°)P,, (29) 
i # = 1  

where A is defined as follows: 
d 

d(J)= Z P~HQjW(1)P. , (30a) 
# = 1  

Q/(W (1) + W°))P. A = Qj (W (1) + W(3))z] (J)P., (30b) 

AQj = 0. (30c) 

The first term of the right-hand side of Eq. (29) is in the first order of the 
perturbation expansion, whereas the second term is of the fifth order. Neglecting 
the last term, we obtain the following equation: 

[W (1) + W (3), H o + A] = QHP. (31) 

If we rewrite this equation in a manner of Eq. (32) of I, we obtain the following 
equation: 

2 {(Hu~ + A(u~))6:~ - Hsi}(We(~ ) + W~ 3)) = Hs~, (32a) 
i 

A(J) = H~/W (1) (32b) # #  H j #  , 

where indices i and j  represent the element of the space Q and # the space P. This 
is a little bit different from the fourth-order (2) approximation of the paper I. 
This change is proposed to ensure the size consistency of the method through 
considering additive separability of the total energy under the model of super- 
molecule as shown in the following subsection. The equation determining 
coefficients of CSF's, Eq. (32a), is equivalent to ACPF (averaged coupled pair 
functional) by Gdanitz and Ahlrichs [16a], if we set A (,{,) independent o f j  and #. 
The idea of higher-order correction by Rattink and co-workers [ 15t] is similar to 
the present approximation. 
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We call this scheme as MRCPA(2). The total energy is given by diagonaliz- 
ing the following effective Hamiltonian: 

H(e MRCPA(2)) = PHP + PH(W (1) + W(3))P. (33) 

2.3 Size consistency 

By considering an assembly of non interaction two molecules, i.e., super- 
molecule, it is tested if the total energy of the system results in addition of the 
two molecules which are obtained by the same computational scheme. 

A Hamiltonian of the supermolecule composed of A and B is expressed as 
follows: 

g = H A + H B. (34) 

We assume that reference functions are properly separated into leading CSF's 
(reference functions) of well-defined states of the two molecules and provide 
properly separated zeroth-order energies. It is well known that the total energy 
by MRSDCI does not correlate into addition of the energies of the two 
molecules obtained by SDCI with the separated reference function(s). Hereafter 
we will show that the size consistency is contained not only in the exact theory 
but also in the approximation presented in the preceding subsection. 

Suppose that IA and IB are spanned by complete orthonormal functions 
which involve number of electrons requested in each molecule and possess 
proper boundary conditions. The projection operators P, Q, and R for the super- 
molecule may be given by: 

P = PAPB, (35a) 

Q = PAQB + QAPB, (35b) 

R --- QAQ~ + PARB + RAPB + QARB + RAQB + RARB. (35C) 

The space Q is composed of those functions directly interacting with the space P. 
The Hamiltonian of each molecule is also partitioned as follows: 

Hx=Hox+Vx ,  x = A , B  (36a) 

Hox = PxHP~ + QxHQ~ + R~HRx. x = A, B (36b) 

We assume that the relations shown in Eqs. (6) ~ (20) hold for either A or B. 
The wave operators WA and WB are specified in the respective molecules, A and 
B. Thus the Bloch equations are expressed as follows: 

[WA, HOA] = VA WA- WATA, (37a) 

[WB, HoB] = VBWB-- WBTB. (37b) 

Noting that two operators associated with different molecules commute with 
each other, we obtain 

[WA WB, Ho] = VWAWB-  WAWB(TA+ TB), 

= VWA WB -- WA WB VWA WB. (38) 

Comparison of Eq. (38) with Eq. (13) reveals that the composite system satisfies 
the multiplicative separability [18, 19]: 

W = WA WB, (39) 
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and the effective Hamiltonian is rewritten as an additively separable form: 

He~; = P~PB(H~ + H.)WA W.,  

= (HA,elf -t- HB,eff)PAPB. (40) 

The eigenvalue of Her f is obtained by summation of eigenvalues of  effective 
Hamiltonian of the subsystems and the multiplicative separability of  W is a 
necessary condition for the size consistency in the present context. 

For the case of the perturbation expansion, we expand Eq. (39) in order of 
the perturbation: 

W ( ' )= ~ W(~)W(B "-k).  (41) 
k=0 

Because of Eqs. (20) and (35b), any odd-order term of the wave operators are 
expressed as: 

w ( 2 k -  1) ~ 1,,l/(2krr A -- 1)rrl3/'(0)B + W ( ~  ) W ( ~  k - 1) 

= W~ k-  1)PB + PA W(~ k -  1) (k ~> !). (42) 

The effective Hamiltonian is given in the separated form by the use of Eq. (42): 

Hef t=  E tr_r(2k) (2k) ~1 A,e~ + H~,e~)PA P~. (43) 
k=O 

If W (2~ - 1) obeys properly separable equations, the theory is size consistent in the 
present context. In order to check if W (1) and W (3) obey properly separable 
equation, we apply Eqs. (34), (35), and (36) to Eqs. (16) and (18), we obtain the 
following equations: 

[ W  (1), Ho] -- [W(A 1), Ho ,h]P  B -[- PA[W(~ ), Ho,B] 

= Q H P  = QAHAPAPB + PAQBHBP, ,  (44) 

[W (3), Ho] = [W(A 3), H0,A]PB + PA [ W(~ ), Ho,s] 

= QHR W (2) - W(1)PHQ W (1) 

= QAHARA W~)P,  + Q , H ,  RB W~)PA 

q- PA HA QA W(A ) W(B 1) q- PB HB QB l~/(1)"B V'A1;'IZ(1) 

(1) (1) W ( D H  ~ W(1)p - -  ( W  A HAQ A W~ PB + B B~B B A 

+ PAHAQA r:V(~)W(1),,A,,B + PBHBQB U~(1)W(1)~,,B " A J  

= (QAHA RA W(~ ) -- W(~)HA QA W~))PB 

+ (QBHBR B W~) wO) r4 t~ w(1)ap (45) - -  vv B ~aB~B rv B ) A' 

It is noted that two of the first four terms of the right-hand side of Eq. (45) are 
canceled by two of the last four terms of the right-hand side of Eq. (45). 
Equations (44) and (45) indicate that W (1) and W (3) obey properly separable 
equations. 

Separability of  the case of  approximation given by Eqs. (27)-(31)  is ex- 
plained as follows. As is valid for the exact case: 

W (1) --~ W (3) = (W(A 1) -~- W(~))P, + PA(W(~ ) q- W~)), (46) 
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the following equation holds: 

W (1) -[- W (3) = (W(A) + W(~))P B "t- P A ( W ~  ) -~ W(B3)). (47) 

Because of Eqs. (30) and (35), A is also separated: 

A = A A + A B. (48) 

It is easily shown that following separable equation obtained from Eq. (31): 

[W(~ ) + W(~ ), H0, A + AAIPB + PA[W O) + W(~ ), H0,B + AB] 

= QaHAPAPB + PAQBHBPB. (49) 

The MRCPA(2),  therefore, has additive separability and is size consistent in this 
context. 

The MRCPA(0) and MRCPA(2) use CSF's of multireference single and 
double excitation CI. So it is notified that result is not invariant with respect to 
rotation in the occupied orbital space as is the case for MRSDCI except in 
special cases. 

3. Test calculations 

Test calculations on Bell2 and N2 were presented in the previous paper I. 
Further test calculations on H20,  FH, and 02 are reported and they are 
compared with the full valence electron CI energies in this paper. 

3.1.I-I2o 

By the use of the contracted gaussian-type orbitals (CGTO's) of double zeta 
(DZ) quality, we calculate the electronic ground-state energies of H 2 0  at three 
geometrical points. First we carry out multiconfiguration self-consistent field 
(MCSCF) calculations with 12 CSF's which are obtained by assigning four 
valence electrons to the 3a~, 4a~, lb2, and 262 MO's, where la~ and 2a~ are 
doubly occupied. By the use of the MO's thus obtained, single and double (SD) 
excited CSF's are generated from the 12 CSF's. The number of CSF's is 2148o 
The calculated energies are presented in Table 1 relative to the energies by the 
full CI whose number of CSF's is 256,473. They are taken from the work of Saxe 
and co-workers [20]. 

Table 1. Results of H20 

R(OH) FVCI a SDCI b CPA(0) b CPA(2) b 

1.0 Re ° -76.1579 2.0 0.7 0.1 
1.5 Re -76.0145 2.2 1.0 0.5 
2.0 Re -75.9053 2.0 1.1 0.8 

a Total energies are given in hartree (a.u.). They are taken from [20] 
b Energies are given relative to the FVCI energies and presented in mhartree 
°Re= 1.843 a.u., <HOH= 110.60 
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Table 2. Results of FH 

R(FH) FVCI a SDCI b CPA(0) b CPA(2) b 

1.0 Re c -- 100.2510 6.5 0.8 0.4 
1.5 Re - 100.1604 6.7 0.5 0.1 
2.0 Re - 100.0811 6.0 2.6 0.5 

Total energies are given in hartree (a.u.). They are taken from [9c] 
b Energies are given relative to the FVCI energies and presented in mhartree 
c Re = 1.733 a.u. 

3.2. FH 

A set of CGTO's of  DZ plus polarization function (P) is used for the FH 
molecule. First we carry out two configuration SCF (TCSCF) calculation with 
the configurations lty22ffz3tyzDz 4 and lo-22ty24o-21rc4 for the ground state, 1S+. 
By the use of  these two functions as reference functions, an SD excited space is 
generated with lo- (F  ls) kept frozen. The number of CSF's is 1092. In Table 2, 
the calculated energies are compared with full valence electron CI (number of 
CSF's; 944,348) of  Bauschlicher and co-workers [9c], where lo- is kept frozen. 

3.3. 02 

A DZP CGTO basis set is used for 02 ground state, 3Sg-. First we carry out 
MCSCF calculation with the six CSF's generated from the following five 
configurations: 

2 4 2 2 2 4 2 4 2 ...3o'ul~,lng, ...3o'glrc~DZg, ...30-gl rc ulfCg, 
2 4 2 1 1 3 1  3 ...3~7gDZulgg, and ...3O-g3O-ulTc u gg (two spin couplings). 

By the use of  these six CSF's as reference functions, an SD excited space is 
generated with frozen cores of log, lau, 2ag, and 2a,.  The number of CSF's is 
3715. The calculated energies are compared with the full valence electron CI 
energies in which lO'g, lo'u, 20-g, and 2~r~ are kept frozen. The calculation was 
done by Bauschlicher and Langhoff [21]. The number of determinants included 
in the full valence electron CI is 21,382,384 in which cores orbitals of lag, lau, 
2%, and 2o-, are kept frozen. 

3.4. Results 

The calculated total energies are given relative to the full valence electron CI 
energies in Table 1, Table 2, and Table 3 for H20,  FH, and 02, respectively. The 
total energies by the full valence electron CI are also included in the tables. The 
results show that the best agreement with full valence electron CI is obtained by 
MRCPA(2) for the given range of the molecular geometry for the three 
molecules. The errors by MRCPA(0) is larger than those by MRCPA(2)  and the 
former is less stable than the latter. The largest errors are given by the MRSDC!  
among the approximations used in the present theory. 
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Table 3. Results of 02 

T. Saki and K. Tanaka 

R(FH) FVCI a SDCI b CPA(0) b CPA(2) b 

2.25 a.u. -- 149.8751 5.7 3.2 1.8 
2.30 a.u. -- 149.8769 5.5 3.1 1.4 
2.35 a.u. -- 149.8767 6.0 3.6 1.6 
100.0 a.u. -- 149.7067 4.6 1.4 1.5 

a Total energies are given in hartree (a.u.). They are taken from [21] 
b Energies are given relative to the FVCI energies and presented in mhartree 

4. Conclusion 

T h e  M R C P A  t h e o r y  is r e f o r m u l a t e d  by the  use o f  the  R a y l e i g h - S c h r 6 d i n g e r  
p e r t u r b a t i o n  t h e o r y  wi th  the  he lp  o f  the  w a v e  o p e r a t o r  a n d  gene ra l i zed  B loch  
e q u a t i o n .  T h e  set o f  C S F ' s  e m p l o y e d  in the  t h e o r y  is e q u a l  to  t ha t  o f  S D C I  wi th  
the  s a m e  re fe rence  func t ions .  I t  is s h o w n  tha t  the  t h e o r y  is size cons i s t en t  by  the  
use o f  a m o d e l  o f  a supe rmolecu le .  

Tes t  ca l cu l a t i ons  by M R C P A ( 2 ) ,  M R C P A ( 0 ) ,  a n d  M R S D C I  are  ca r r i ed  o u t  
for  H 2 0  , F H ,  a n d  02 .  T h e  best  a g r e e m e n t  w i t h  the  energies  o f  the  full  va l ence  
e l ec t ron  CI  is o b t a i n e d  by M R C P A ( 2 ) .  T h e  M R S D C I  gives the  la rges t  e r ro rs  
a m o n g  the  three  m e t h o d s .  

Acknowledgements. The authors are grateful to Professors K. Ohno and F. Sasaki for their helpful 
comments and encouragement, and express their thanks to Professor K. Yamaguchi for his interest 
and encouragement. The present work is supported partially by Grant-in-Aid for Scientific Research 
on Priority Area "Theory of Chemical Reactions" and "New Functionality Materials" from the 
Ministry of Education, Science, and Culture. Computations are carried out with the program systems 
of JAMOL3 [22], MICA3 [23], and its modified version for CPA on a HITAC M680 system at the 
Center for Information Processing Education of Hokkaido University. 

References 

1. L6wdin PO (1957) Adv Chem Phys 2:207-322 
2. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford 
3. Shavitt I (1977) The method of configuration interaction. In: Schaefer III HF (ed) Methods of 

electronic structure theory, vol 3. Plenum, NY, p 189-276 
4. Roos BO, Siegbahn PEM (1977) The direct configuration interaction method from molecular 

integrals. In: Schaefer III HF (ed) Methods of electronic structure theory, vol 3. Plenum, NY, 
p 277-318 

5. (a) Paldus J (1974) J Chem Phys 61:5321-5330 
(b) Shavitt I (1978) Int J Quantum Chem Sli:131 148 

6. (a) Davidson ER (1974) Int J Quantum Chem VII:83-89 
(b) Buenker RJ, Peyerimhoff SD (1975) Theoret Chim Acta 35:33-58, ibid 39:217-228 
(c) Liu B, Yoshimine M (1981) J Chem Phys 74:612-616 
(d) Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315-321 
(e) Sasaki F, Tanaka K, Noro T, Togasi M, Nomura T, Sekiya M, Gonoi T, Ohno K (1987) 
Theoret Chim Acta 72:123-138 
(f) Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803-5814 

7. Bartlett RJ (1981) Ann Rev Phys Chem 32:359 401 
8. Urban M, Cernusak I, Kell6 V, Noga J (1987) Electron correlation in molecules. In: Wilson S 

(ed) Methods in Computational Chemistry, vol 1. Plenum, NY 



A CSF-based multireference coupled pair approximation II 461 

9. (a) Langhoff SR, Davidson ER (1974) Int J Quantum Chem VIII:61-72; Davidson ER, Silver 
DW (1977) Chem Phys Lett 52:403-406 
(b) Buenker R J, Shih SK, Peyerimhoff SD (1979) Chem Phys 36:97-112 
(c) Bauschlicher CW Jr, Langhoff SR, Taylor PR, Handy NC, Knowles PJ (1986) J Chem Phys 
85:1469-1474 
(d) Bauschlicher CW Jr, Taylor PR (1986) Chem Phys 85:6510-6512; (1987) ibid 86:1420-1424, 
(1987) Theoret Chim Acta 71:263-276 
(e) Knowles DB, Alvarez-Collado JR, Hirsch G, Buenker RJ (1990) J Chem Phys 92:585-596 

10. Cizek J (1966) J Chem Phys 45:4256-4266; (1969) Adv Chem Phys 14:35-91 
11. Meyer W (1971) Int J Quantum Chem $5:341-348; (1972) J Chem Phys 58:1017-1035; (1977) 

Configuration expansion by means of pseudonatural orbitals. In: Schaefer III HF (ed) Methods 
of electronic structure theory, vol 3. Plenum, NY, p 413-446 

12. (a) Hurley AC (1976) Electron correlation in small molecules, Academic, NY 
(b) Kutzelnigg W (1977) Pair correIation theories. In: Schaefer III HF (ed) Methods of electronic 
structure theory, vol 3. Plenum, NY, p 129-188 
(c) Ahlrichs R (1979) Comput Phys Comm 17:31-45 

13. (a) Brandow BH (1967) Rev Modern Phys 39:771-828 
(b) Lindgren I (1974) J Phys B (London) 7:2441-2470 
(c) Hose G, Kaldor U (1979) J Phys B (London) 12:3827-3855 
(d) Shavitt I, Redmon LT (1980) J Chem Phys 83:5711-5717 

14. (a) Jeziorski B, Monkhorst HJ (1981) Phys Rev A24:1668-1681 
(b) Lindgren I (1978) Int J Quanum Chem S12:33 58 
(c) Mukherjee D (1986) Chem Phys Lett 125:207-212 
(d) Nakatsuji H (1985) J Chem Phys 83:713 722 
(e) Lindgren I, Mukherjee D (1987) Phys Rep 151:93 127 
(f) Meissner L, Jankowski K, and Wasilewski J (1988) Int J Quantum Chem XXXIV:535-557 
(g) Kutzelnigg W (1988) Quantum chemistry in Fock space. In: Mukherjee D (ed) Aspects of 
many-body effects in molecules and extended systems. Lecture Notes in Chemistry, vol 50. 
Springer-Verlag, Berlin, NY, p 35-67 
(h) Mukherjee D, Pal S (1989) Adv Quantum Chem 20:291-373 

15. (a) Baker H and Robb MA (1983) Mol Phys 50:1077 1082 
(b) Banerjee A, Simons J (1981) Int J Quantum Chem 19:207-216; (1982) J Chem Phys 
76:4548 4559 
(c) Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424-430; Laidig WD, Saxe P, Bartlett 
RJ (1987) J Chem Phys 86:887-907 
(d) Tanaka K and Terashima H (1984) Chem Phys Lett 106:558 562 
(e) Hoffmann MR and Simons J (1989) J Chem Phys 90:3671 3679 
(f) Ruttink PJA, van Lenthe JH, Zwaans R, Groenenboom GC (1991) J Chem Phys 94:7212- 
7220 

16. (a) Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413 420 
(b) Cave RJ, Davidson ER (1988) J Chem Phys 89:6798-6814; (1988) ibid 88:5770-5778 
(c) Tanaka K, Sakai T, Terashima H (1989) Theoret Chim Acta 76:213-225 

17. Kutzelnigg W (1975) Chem Phys Lett 35:283-285 
18. Primas H (1965) Separability in Many-electron systems. In: Sinanoglu O (ed) Modern Quantum 

Chemistry Part II, Academic, NY, p 33-74 
19. Kvasnicka V (1977) Adv Chem Phys 36:345 412 
20. Saxe P, Schaefer III HF, Handy NC (1981) Chem Phys Lett 79:202-204 
21. Bausehlicher CW Jr, Langhoff SR (1987) J Chem Phys 86:5595-5599 
22. Kashiwagi H, Takada T, Miyoshi E, Obara S, Sasaki F (1977) Library program of the computer 

center of Institute for Molecular Science. Okazaki, Japan 
23. Murakami A, Iwaki H, Terashima H, Shoda T, Kawaguchi T, Now T (1985) Library program 

of the computing center. Hokkaido Univ, Sapporo, Japan 


